
Beyond Traditional Compilation

Why the Linux community should stop the
single compiler monopoly

Kostya Serebryany <kcc@google.com>
Linux Plumbers / LLVM, Aug 19 2015

mailto:kcc@google.com

“Dynamic Testing Tools” team at Google

● Goal: our users find their bugs w/o our help
○ 10000+ bugs fixed since 2008

● Chromium, Android, server-side devs; C++

● Since 2011: compiler instrumentation

Traditional C/C++ compilation

foo.c foo.o

One

 compiler

 to compile

 them all

https://en.wikipedia.org/wiki/Monopoly

A monopoly (from Greek monos μόνος (alone or single) +
polein πωλεῖν (to sell)) exists when a specific person or
enterprise is the only supplier of a particular commodity [...]

Monopolies are [...] characterized by a lack of economic
competition to produce the good or service, a lack of viable
substitute goods

https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Competition
https://en.wikipedia.org/wiki/Good_(economics)
https://en.wikipedia.org/wiki/Service_(economics)
https://en.wikipedia.org/wiki/Competition
https://en.wikipedia.org/wiki/Substitute_good
https://en.wikipedia.org/wiki/Substitute_good

Monopoly is bad

● Yet “the one compiler” monopolized the Linux ecosystem

○ Kernel sources

○ GLIBC

○ Distribution builds

Why break the monopoly?

int main(int argc, char **argv) {

 int stack_array[100];

 stack_array[1] = 0;

 return stack_array[argc + 100]; } // BOOM

% ancc++ -O1 -fsanitize=address a.cc; ./a.out

==10589== ERROR: AddressSanitizer stack-buffer-overflow

READ of size 4 at 0x7f5620d981b4 thread T0

 #0 0x4024e8 in main a.cc:4

Address 0x7f5620d981b4 is located at offset 436 in frame
<main> of T0's stack:

 This frame has 1 object(s):

 [32, 432) 'stack_array'

ASan report example: stack-buffer-overflow

ASan report example: use-after-free
int main(int argc, char **argv) {

 int *array = new int[100];

 delete [] array;

 return array[argc]; } // BOOM
% ancc++ -O1 -fsanitize=address a.cc && ./a.out
==30226== ERROR: AddressSanitizer heap-use-after-free

READ of size 4 at 0x7faa07fce084 thread T0

 #0 0x40433c in main a.cc:4

0x7faa07fce084 is located 4 bytes inside of 400-byte region

freed by thread T0 here:

 #0 0x4058fd in operator delete[](void*) _asan_rtl_

 #1 0x404303 in main a.cc:3

previously allocated by thread T0 here:

 #0 0x405579 in operator new[](unsigned long) _asan_rtl_
 #1 0x4042f3 in main a.cc:2

% ancc -g -fsanitize=address a.cc
% ASAN_OPTIONS=detect_stack_use_after_return=1 ./a.out
==19177==ERROR: AddressSanitizer: stack-use-after-return
READ of size 4 at 0x7f473d0000a0 thread T0
 #0 0x461ccf in main a.cc:8

Address is located in stack of thread T0 at offset 32 in frame
 #0 0x461a5f in LeakLocal() a.cc:2
 This frame has 1 object(s):
 [32, 36) 'local' <== Memory access at offset 32

ASan report example: stack-use-after-return
int *g;
void LeakLocal() {
 int local;
 g = &local;
}

int main() {
 LeakLocal();
 return *g;
}

 int X;

 std::thread t([&]{X = 42;});
 X = 43;
 t.join();

% ancc -fsanitize=thread -g race.cc && ./a.out
WARNING: ThreadSanitizer: data race (pid=25493)

 Write of size 4 at 0x7fff7f10e338 by thread T1:

 #0 main::$_0::operator()() const race.cc:4 ...
 Previous write of size 4 at 0x7...8 by main thread:

 #0 main race.cc:5

 Location is stack of main thread.

TSan report example: data race

MSan report example
int main(int argc, char **argv) {
 int x[10];
 x[0] = 1;
 return x[argc]; }
% ancc -fsanitize=memory a.c -g; ./a.out

WARNING: Use of uninitialized value
 #0 0x7f1c31f16d10 in main a.cc:4
Uninitialized value was created by an
allocation of 'x' in the stack frame of
function 'main'

UBSan report example: int overflow

int main(int argc, char **argv) {
 int t = argc << 16;
 return t * t;
}
% ancc -fsanitize=undefined a.cc -g; ./a.out

a.cc:3:12: runtime error:
signed integer overflow: 65536 * 65536
cannot be represented in type 'int'

UBSan report example: invalid shift

int main(int argc, char **argv) {
 return (1 << (32 * argc)) == 0;
}

% ancc -fsanitize=undefined a.cc -g; ./a.out

a.cc:2:13: runtime error: shift exponent 32 is
too large for 32-bit type 'int'

Kernel/GLIBC/Distros
● Kernel

○ KASAN: in trunk, 65+ bugs found

■ 35 use-after-free, 18 heap-out-of-bounds, 8 stack-out-of-bounds, 2 global-out-of-bounds,
2 user-memory-access

○ KTSAN: POC, 1 bug found & fixed
○ KMSAN: nope
○ KUBSAN: ???

● GLIBC:
○ Can build with ASan (tons of hacks)
○ 10+ bugs found

● Ubuntu distro:
○ Can build 60+ key libs with ASan/MSan/TSan using external scripts
○ Hard to use and maintain

● Cool, but “the one compiler” already
has some of these too!

● Yes, but not all
● Yes, as the result of competition
● Wait, there is more

Sanitizers are not enough

● ASan, TSan, MSan, UBSan are “best-effort tools”:
○ They do not prove correctness
○ They are only as good as the tests are

● Beyond Sanitizers:
○ Improve test quality (aka test coverage) by fuzzing
○ Protect from security-sensitive bugs in production

(hardening)

Control-flow-guided (coverage-guided) fuzzing
● Acquire a test corpus (e.g. crawl the web)

● Minimize the corpus according to some metric, e.g. (code coverage)/
(execution time)

● Mutate tests from the corpus and execute them

● Run the mutations with code coverage instrumentation

● Add the mutations to the corpus if new coverage is discovered

Sanitizer Coverage instrumentation
● -fsanitize-coverage=

○ func/bb/edge : records if a function, basic block or edge was executed
○ indirect-calls : records unique indirect caller-callee pairs
○ 8bit-counters : similar to AFL, provides 8 state counter for edges

■ (1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+)

● Provides the status in-process and dumps data on disk at exit and
○ i.e. supports in-process and out-of-process clients

● Should be combined with ASan, MSan, LSan, or UBSan
● Typical slowdown within 10%

○ 8bit counters may be unfriendly to multi-threaded apps

libFuzzer
● Lightweight in-process control-flow guided fuzzer

○ Provide your own target function
■ void TestOneInput (const uint8_t *Data, size_t Size);

○ Build: -fsanitize-coverage=edge[,indirect-calls][,8bit-counters]
○ Build: -fsanitize={address,memory,undefined,leak}

○ Link with libFuzzer

● Targeted at libraries/APIs, not at large applications

Example: OpenSSL

SSL_CTX *sctx;
int Init() { ... }
extern "C" void TestOneInput(unsigned char *Data, size_t Size) {
 static int unused = Init();
 SSL *server = SSL_new(sctx);
 BIO *sinbio = BIO_new(BIO_s_mem());
 BIO *soutbio = BIO_new(BIO_s_mem());
 SSL_set_bio(server, sinbio, soutbio);
 SSL_set_accept_state(server);
 BIO_write(sinbio, Data, Size);
 SSL_do_handshake(server);
 SSL_free(server);
}

How quickly can you find Heartbleed with fuzzing?
I. 1 Second

II. 1 Minute
III. 1 Hour
IV. 1 Day
V. 1 Month

VI. 1 Year

Yet, we still need code hardening
● Heap-buffer-overflow or heap-use-after-free may overwrite VPTRs, function

pointers, array sizes, etc
○ Hijacked VPTR in Chromium: Pwn2Own 2013 (CVE-2013-0912)

● Stack-buffer-overflow or stack-use-after-return may also overwrite return
addresses

● Running ASan in production costs 2x CPU/RAM -- infeasible
○ ASan can be bypassed anyway

● Compile with -fsanitize=cfi-vcall -flto (LTO!)
● Every disjoint class hierarchy is handled separately

○ Assumes the class hierarchy is a closed system; ok for Chrome

● Layout the vtables for the entire class hierarchy as a contiguous array
○ Align every vtable by the same power-of-2

● For every virtual function call site
○ Compile-time: compute the strict set of allowed functions
○ Run-time: perform a range check, alignment check, and a bitset lookup

● Optimizations:
○ A bitset of <= 64 bits requires no memory loads
○ No check if the bitset contains all ones
○ Optimize the layouts to minimize the bitset sizes

● Chrome: builds, runs, catches real bugs, costs < 1% CPU (Linux)

CFI (Control Flow Integrity)

CFI: generated x86_64 assembler
All ones

mov $0x4008f0,%ecx
mov %rax,%rdx
sub %rcx,%rdx
rol $0x3b,%rdx
cmp $0x2,%rdx
jae CRASH
mov %rbx,%rdi
callq *(%rax)
…
CRASH: ud2

<= 64 bits

mov $0x400e20,%edx
mov %rax,%rcx
sub %rdx,%rcx
rol $0x3b,%rcx
cmp $0xe,%rcx
ja CRASH
mov $0x4007,%edx
bt %ecx,%edx
jae CRASH
mov %rbx,%rdi
callq *(%rax)
…
CRASH: ud2

Full check

mov $0x401810,%edx
mov %rax,%rcx
sub %rdx,%rcx
rol $0x3b,%rcx
cmp $0x40,%rcx
ja 400936 CRASH
testb $0x1,0x402140(%rcx)
je 400936 CRASH
mov %rbx,%rdi
callq *(%rax)
…
CRASH: ud2

More CFI
● Non-virtual member calls, indirect calls

○ -fsanitize=cfi-nvcall, -fsanitize=cfi-icall
● Casts (for polymorphic types)

○ -fsanitize=cfi-derived-cast, -fsanitize=cfi-unrelated-cast
● Do not require LTO??
● Allow class hierarchies to cross the DSO boundaries

○ Maybe not a great idea??
○ Control Flow Guard (/d2guard4 + /Guard:cf)

● More platforms
○ Coming soon: Android, OSX, Windows

SafeStack
● Place local variables on a separate stack (separately mmaped region)

○ -fsanitize=safe-stack

○ Linux, FreeBSD, OSX

● stack-buffer-overflow/use-after-return can’t touch the return addresses

● VTPRs and function pointers can still be affected
○ Combine with -fsanitize=cfi

● Chromium: costs < 1% CPU

SafeStack: code example
push %r14
push %rbx
push %rax
mov 0x207d0d(%rip),%r14
mov %fs:(%r14),%rbx # Get unsafe_stack_ptr
lea -0x10(%rbx),%rax # Update unsafe_stack_ptr
mov %rax,%fs:(%r14) # Store unsafe_stack_ptr
lea -0x4(%rbx),%rdi
movl $0x123456,-0x4(%rbx)
callq 40f2c0 <_Z3barPi>
mov %rbx,%fs:(%r14) # Restore unsafe_stack_ptr
xor %eax,%eax
add $0x8,%rsp
pop %rbx
pop %r14
retq

int main() {
 int local_var = 0x123456;
 bar(&local_var);
}

The community can break the monopoly!
● First, make everything build with “another” compiler

○ Kernel, GLIBC, Distros

● Setup contiguous builds, don’t let it regress, ever

● Do not switch to “another” compiler completely, continue to use both

● Wait for 3-rd and 4-th compilers to appear and let them compete

● Profit!

Conclusions
● ASAN, TSAN, MSAN, UBSAN

○ Like a toothbrush: use them or risk losing your teeth

● Guided fuzzing is an extremely powerful yet under-utilized technique
○ Use it with Sanitizers

○ libFuzzer makes it easy

● Bugs will still slip into production -- use hardening
○ CFI for virtual calls, other calls, and casts

○ SafeStack

● The arms race continues, we are not done yet

