Beyond Traditional Compilation

Why the Linux community should stop the
single compiler monopoly

Kostya Serebryany <kcc@google.com>
Linux Plumbers / LLVM, Aug 19 2015

mailto:kcc@google.com

“Dynamic Testing Tools” team at Google

e Goal: our users find their bugs w/o our help
o 10000+ bugs fixed since 2008

e Chromium, Android, server-side devs; C++

e Since 2011: compiler instrumentation

Traditional C/C++ compilation

f00.C ——

One

them all

Monopoly

A monopoly (from Greek monos uovoc (alone or single) +
polein TTwAElv (to sell)) exists when a specific person or
enterprise is the only supplier of a particular commodity [...]

Monopolies are [...] characterized by a lack of economic
competition to produce the good or service, a lack of viable
substitute goods

https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Competition
https://en.wikipedia.org/wiki/Good_(economics)
https://en.wikipedia.org/wiki/Service_(economics)
https://en.wikipedia.org/wiki/Competition
https://en.wikipedia.org/wiki/Substitute_good
https://en.wikipedia.org/wiki/Substitute_good

Monopoly is bad

e Yet “the one compiler’ monopolized the Linux ecosystem
o Kernel sources

o GLIBC

o Distribution builds

Why break the monopoly?

ASan report example: stack-buffer-overflow

int main(int argc, char **argv) {

int stack array[100];

stack array[l] = 0;

return stack array[argc + 100]; '} // BOOM
% ancc++ -0l -fsanitize=address a.cc; ./a.out
==10589== ERROR: AddressSanitizer stack-buffer-overflow
READ of size 4 at 0x7£5620d981b4 thread TO

#0 0x4024e8 in main a.cc:4

Address 0x7f5620d981b4 is located at offset 436 in frame
<main> of TO's stack:

This frame has 1 object(s):

[32, 432) 'stack array'

ASan report example: use-after-free

int main (int argc, char **argv) {
int *array = new int[100];
delete [] array;

return arrayl[arge]; } // BOOM
% ancc++ -0l -fsanitize=address a.cc && ./a.out
==30226== ERROR: AddressSanitizer heap-use-after-free
READ of size 4 at 0x7faal07fce(084 thread TO

#0 0x40433c in main a.cc:4
Ox7faal07fce084 is located 4 bytes inside of 400-byte region
freed by thread TO here:

#0 0x4058fd in operator delete[] (void*) asan rtl

#1 0x404303 in main a.cc:3
previously allocated by thread TO here:

#0 0x405579 in operator new[] (unsigned long) asan rtl
#1 0x4042f3 in main a.cc:2

ASan report example: stack-use-after-return

int *g; int main () {
volid LeakLocal () { LeakLocal () ;
int local; return *g;

g = &local; }
}

% ancc -g -fsanitize=address a.cc
% ASAN OPTIONS=detect stack use after return=1 ./a.out
==]19177==ERROR: AddressSanitizer: stack-use-after-return
READ of size 4 at 0x7£473d0000a0 thread TO

#0 Ox46lccf in main a.cc:8

Address 1s located in stack of thread TO at offset 32 in frame
#0 Ox46lab5f in LeakLocal() a.cc:2

This frame has 1 object(s):
[32, 36) 'local' <== Memory access at offset 32

TSan report example: data race

int X;

std::thread t([&]{X = 42;1});
X = 43;

t.join();

% ancc -fsanitize=thread -g race.cc && ./a.out
WARNING: ThreadSanitizer: data race (pid=25493)
Write of size 4 at Ox7fff7£10e338 by thread Tl:
#0 main::$ 0::operator () () const race.cc:4
Previous write of size 4 at 0O0x7...8 by main thread:

#0 main race.cc:5

MSan report example

int main(int argc, char **argv) {
int x[10];
x[0] = 1;
return x[argc];, }

$ ancc -fsanitize=memory a.c -g; ./a.out

WARNING: Use of uninitialized wvalue

#0 0x7f1c31f16d10 in main a.cc:4
Uninitialized value was created by an
allocation of 'x' in the stack frame of
function 'main'

UBSan report example: int overflow

int main(int argc, char **argv) {
int t = argc << 16;
return t * t;

J

% ancc -fsanitize=undefined a.cc -g; ./a.out
a.cc:3:12: runtime error:
signed i1integer overflow: 65536 * 65536

cannot be represented 1n type 'int'

UBSan report example: invalid shift

int main(int argc, char **argv) {
return (1 << (32 * argc)) == 0;
% ancc -fsanitize=undefined a.cc -g; ./a.out

a.cc:2:13: runtime error: shift exponent 32 1is
too large for 32-bit type 'int'

Kernel/GLIBC/Distros

e Kernel
o KASAN: in trunk, 65+ bugs found

m 35 use-after-free, 18 heap-out-of-bounds, 8 stack-out-of-bounds, 2 global-out-of-bounds,
2 user-memory-access
o KTSAN: POC, 1 bug found & fixed
o KMSAN: nope
o KUBSAN: ???
e GLIBC:
o Can build with ASan (tons of hacks)
o 10+ bugs found
e Ubuntu distro:
o Can build 60+ key libs with ASan/MSan/TSan using external scripts
o Hard to use and maintain

f“/\ /-\"\

Cool, but “the one ﬂnpller” already
has some of these too!

Yes, but not all
Yes, as the result of competition
Wait, there i1s more

Sanitizers are not enough

e ASan, TSan, MSan, UBSan are “best-effort tools™:
o They do not prove correctness
o They are only as good as the tests are

e Beyond Sanitizers:
o Improve test quality (aka test coverage) by fuzzing
o Protect from security-sensitive bugs in production
(hardening)

Control-flow-guided (coverage-guided) fuzzing

Acquire a test corpus (e.g. crawl the web)

Minimize the corpus according to some metric, e.g. (code coverage)/
(execution time)

Mutate tests from the corpus and execute them
Run the mutations with code coverage instrumentation

Add the mutations to the corpus if new coverage is discovered

Sanitizer Coverage instrumentation

@ -fsanitize-coverage=
o func/bb/edge: records if a function, basic block or edge was executed
0 indirect-calls: records unique indirect caller-callee pairs
o 8bit-counters: similarto AFL, provides 8 state counter for edges

m (1,2, 3,4-7,8-15, 16-31, 32-127, 128+)

e Provides the status in-process and dumps data on disk at exit and
o i.e. supports in-process and out-of-process clients

e Should be combined with ASan, MSan, LSan, or UBSan

e Typical slowdown within 10%
o 8bit counters may be unfriendly to multi-threaded apps

libFuzzer

e Lightweight in-process control-flow guided fuzzer
o Provide your own target function
[| void TestOneInput (const uint8 t *Data, size_t Size);
o Build: -fsanitize-coverage=edge[,indirect-calls] [, 8bit-counters]

o Build: -fsanitize={address, memory,undefined, leak}

o Link with libFuzzer

e Targeted at libraries/APls, not at large applications

Example: OpenSSL

SSL CTX *sctx;

int Init() { ... }

extern "C" void TestOnelInput (unsigned char *Data, size t Size) ({
static int unused = Init();
SSL *server = SSL new(sctx);
BIO *sinbio = BIO new (BIO s mem());
BIO *soutbio = BIO new (BIO s mem());
SSL set bio(server, sinbio, soutbio);
SSL set accept state(server);
BIO write(sinbio, Data, Size);
SSL_do_handshake (server) ;

SSL free (server);

How quickly can you find Heartbleed with fuzzing?

. 1 Second
. 1 Minute
[ll. 1 Hour
V. 1 Day
V. 1 Month
VI. 1 Year

Yet, we still need code hardening

e Heap-buffer-overflow or heap-use-after-free may overwrite VPTRSs, function
pointers, array sizes, etc
o Hijacked VPTR in Chromium: Pwn20wn 2013 (CVE-2013-0912)

e Stack-buffer-overflow or stack-use-after-return may also overwrite return
addresses

e Running ASan in production costs 2x CPU/RAM -- infeasible

o ASan can be bypassed anyway

CFIl (Control Flow Integrity)

e Compile with -fsanitize=cfi-vcall -flto (LTO!)

e Every disjoint class hierarchy is handled separately
o Assumes the class hierarchy is a closed system; ok for Chrome

e Layout the vtables for the entire class hierarchy as a contiguous array
o Align every vtable by the same power-of-2

e For every virtual function call site

o Compile-time: compute the strict set of allowed functions

o Run-time: perform a range check, alignment check, and a bitset lookup
e Optimizations:

o A bitset of <= 64 bits requires no memory loads

o No check if the bitset contains all ones
o Optimize the layouts to minimize the bitset sizes

e Chrome: builds, runs, catches real bugs, costs < 1% CPU (Linux)

CFIl: generated x86 64 assembler

All ones

mov $0x4008£f0, $ecx
mov Srax,srdx

sub g$rcx, $rdx

rol $0x3b, $rdx

cmp $0x2, $rdx

Jae CRASH

mov $rbx,%rdi
callg * (%rax)

CRASH: ud2

<= 64 bits

mov
mov
sub
rol
cmp
ja

mov
bt

jae
mov

callqg

CRASH:

$0x400e20, $edx
Srax,%rcx
$rdx, $rcx
$0x3b, $rcx
$0xe, $rcx
CRASH

$0x4007, %edx
$ecx, $edx
CRASH

$rbx, $rdi

* ($rax)

ud2

Full check

mov $0x401810, $edx
mov Srax,srcx

sub $rdx, $rcx

rol $0x3b, $rcx

cmp $0x40, %rcx

ja 400936 CRASH
testb $0x1,0x402140 (%rcx)
je 400936 CRASH
mov $rbx,%$rdi
callg * (%rax)

CRASH: ud2

More CFI

e Non-virtual member calls, indirect calls
o -fsanitize=cfi-nvcall, -fsanitize=cfi-icall
e Casts (for polymorphic types)
o -fsanitize=cfi-derived-cast, -fsanitize=cfi-unrelated-cast
e Do not require LTO??
e Allow class hierarchies to cross the DSO boundaries

o Maybe not a great idea??
o Control Flow Guard (/d2guard4 + /Guard:cf)

e More platforms
o Coming soon: Android, OSX, Windows

SafeStack

e Place local variables on a separate stack (separately mmaped region)
o -fsanitize=safe-stack

o Linux, FreeBSD, OSX

e stack-buffer-overflow/use-after-return can’t touch the return addresses

e VTPRs and function pointers can still be affected

o Combine with -fsanitize=cfi

e Chromium: costs < 1% CPU

SafeStack: code example

push
push
push
mov
mov
lea
mov
lea
movl
callq
mov
xor
add
pop
pop
retq

$rl4 int main() {
Srbx int local var = 0x123456;
S rax bar (&local var);

0x207d0d (%rip) ,%rl4 }

$fs: (%rld) ,%rbx # Get unsafe stack ptr
-0x10 (%rbx) ,%rax # Update unsafe_ stack ptr
$rax,%fs: (%rl4) # Store unsafe stack ptr
-0x4 (%rbx) ,%rdi

$0x123456,-0x4 (%rbx)

40£f2c0 < Z3barPi>

$rbx,%fs: (%rl4) # Restore unsafe stack ptr
$eax, seax

$0x8,%rsp

$rbx

$rl4d

The community can break the monopoly!

e First, make everything build with “another” compiler
o Kernel, GLIBC, Distros

e Setup contiguous builds, don't let it regress, ever
e Do not switch to “another” compiler completely, continue to use both
e Wait for 3-rd and 4-th compilers to appear and let them compete

e Profit!

Conclusions

e ASAN, TSAN, MSAN, UBSAN

o Like a toothbrush: use them or risk losing your teeth

e Guided fuzzing is an extremely powerful yet under-utilized technique
o Use it with Sanitizers

o libFuzzer makes it easy
e Bugs will still slip into production -- use hardening
o CFl for virtual calls, other calls, and casts

o SafeStack

e The arms race continues, we are not done yet

